Collaborating with the University of Birmingham

Collaborating with the University of Birmingham

From atoms to robots

Leading-edge research is at the core of what we do in the College of Engineering and Physical Sciences at the University of Birmingham. From atoms to astronomy, computers to cars and robots to robust materials, the goal is to transform our understanding of the world to make life easier, healthier and more sustainable. Our video provides a snapshot of the variety of physical sciences research conducted at the University.

Putting the smarts in robots

The Intelligent Robotics Laboratory and Professor Jeremy Wyatt develop algorithms that enable robots to work in uncertain and unfamiliar worlds. With a focus on autonomous robot planning, architectures for robot intelligence, robots that learn, robot manipulation, machine vision and general machine learning, they aim to endow a robot with explicit representations of what it does and doesn't know, and of how its knowledge changes under the actions it can perform. This ability will allow robots to plan in challenging worlds where they know little.

Advanced manufacturing methods

The Materials Processing group is based in the University’s School of Metallurgy and Materials. Their research programme is carried out in the Advanced Materials and Processing Laboratory and aims at understanding the influence of advanced materials processing techniques.

The scientific emphasis is on understanding material-process interactions, utilising electron microscopy, synchrotron X-rays and neutron diffraction, and micro-tomography, to assess the impact of the processing method on the microstructural, structural integrity, and residual stress development. The group hosts unique experimental systems, making it one of the centres of excellence in netshape manufacturing in the UK.
The research is conducted in close collaboration with a large number of industrial end-users in the aerospace, defence, nuclear, and engineering sectors.

Blending the best of the real with the best of the virtual

Established in 2003, the team are a multidisciplinary group of award-winning researchers focused on human-centred research and design issues relevant to future interactive technologies. Led by Professor Bob Stone and based in the University’s Department of Electronic, Electrical and Systems Engineering, their research covers task and usability analysis; human factors integration; ergonomics; the design and evaluation of advanced interfaces, including wearable computing, virtual, augmented and ‘mixed’ reality; and telerobotics and telepresence projects. They deliver research on behalf of and in collaboration with a range of partners in the defence, healthcare, heritage and telerobotics / telepresence sectors.

Affects all aspects of life

Dr. Karl Dearn leads the Mason Institute of Tribology and applies mechanical principles and design methodologies to solve challenges in tribological challenges in engineering design. This multidisciplinary research encompasses the development of polymers and composites for energy applications, novel automotive technology, the design and optimisation of biomedical implants and further research in fundamental polymer tribology.

Making energy clean

The work of the Birmingham Centre for Energy Storage (BCES) and its Director, Professor Yulong Ding sits within University’s Birmingham Energy Institute, a 140-member strong partnership changing the way we deliver, consume and think about energy. BCES research is driving innovation and taking concepts from the laboratory to market.

Cryogenic energy storage (CES) systems use off-peak electricity to liquefy air. The cryogenic liquid that is formed is stored in a vessel then vapourised into a gas during an expansion process, which drives a turbine. This system generates electricity when it is most needed; solving the ‘wrong-time wrong-place’ generation and supply problem.

Cryogenic liquid can additionally be used to improve the efficiency of diesel generators, which are routinely used as reserve capacity on the grid. The system is also an efficient mechanism for generating electricity from low-grade waste heat from power stations or industrial processes. Unlike some other energy storage technologies, CES does not require scarce resource, and is not limited by geography or geology.

Find out more

To learn more about our industrial collaborations please visit our website or contact our Business Engagement Partner Sam Hickman.

Expand for more